

Abstracts

Equivalent Circuit of the Bolometer Detector

S.B. Cohn. "Equivalent Circuit of the Bolometer Detector." 1968 *Transactions on Microwave Theory and Techniques* 16.8 (Aug. 1968 [T-MTT]): 536-541.

A small-signal dynamic equivalent circuit is established for the output voltage of a dc-biased bolometer (barretter) detector. The circuit consists of a voltage generator $\langle \psi \rangle$, whose output is an undistorted replica of the incident RF-power modulation envelope, followed by a series resistor R_1 of dynamic origin, a shunt capacitor C that represents heat storage in the bolometer wire, and a series resistor R_0 equal to the dc resistance, usually 200 ohms. The resistance R_1 is independent of signal level, and is typically about 220 ohms for an 8.75-mA bolometer and about 120 ohms for a 4.5-mA bolometer. At a modulation frequency f_m near 0 Hz, the equivalent audio source impedance of the bolometer is $R_1 + R_0$. The common belief that the source impedance is R_0 in the weak-signal case is, therefore, refuted. Formulas are derived giving $\langle \psi \rangle$ / P_{RF} and R_1 as functions of basic, easily determined bolometer parameters. The time constant for open-circuit load is $\tau_{oc} = R_1/C$, where τ_{oc} is determined best by measurement, since catalog values of τ_{oc} often are seriously in error. The capacitance is $C = \tau_{oc} / R_1$. With one type of bolometer τ_{oc} measures about 110 μ s, while various catalogs state values of 250 to 350 μ s. The equivalent circuit is confirmed quantitatively by measurements of output voltage and source impedance versus modulation frequency.

[Return to main document.](#)